Rayleigh-damping-coefficients

Determination of the damping ratio from the logarithmic decay

Percentage of loss in Apmplitude in one Cycle.	10%
X0/X1	1.11
δ	0.1054
ζ1	0.01677

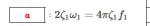
START HERE

Damping proportional to the stiffness. $\alpha=0$

It is then most common to assume the case of damping proportional to the stiffness, that is, α =0, and the β stiffness coefficient is computed from:

ωl	2
β	0.0168
В	0.0000

ea from:			
Check Mecway/ccx			
Displacement	X0	50	mm
Displacement	X1	44.9943	mm
Percentage of loss in Apmplitude in one			
Cycle w1.	10.01%		
Error	0.11%		


Damping proportional to the inertia. β=0

If the knowledge on the system indicates the case of damping decreasing with the frequency, then one can assume the case of damping proportional to the inertia, where β =0 and determine the mass coefficient α

[Rad/s] [s] [Rad/s]

[Rad/s]

[Rad/s]

ω1	50
β	0.0000
α	1.6766

Check Mecway/ccx			
Displacement	XO	50	mm
Displacement	X1	44.9739	mm
Percentage of loss in Apmplitude in one			
Cycle w1.	10.05%		
Error	0.52%		

Mixture of both

$$\alpha\!=\!\frac{2\,\omega_1\omega_2(\zeta_2\,\omega_1\!-\!\zeta_1\,\omega_2)}{\omega_1^2\!-\!\omega_2^2} \quad \beta\!=\!\frac{2\,(\zeta_1\,\omega_1\!-\!\zeta_2\,\omega_2)}{\omega_1^2\!-\!\omega_2^2}$$

ω1	70
ω2	80
ζ1	0.0168
ζ2=ζ1	0.0168
α	1.2519
β	0.0002

Check Mecway/ccx			
Displacement	XO	50	mm
Displacement w1	X1 (w1)	44.9923	mm
Displacement w2	X1 (w2)	44.9739	mm
Percentage of loss in Apmplitude in one			
Cycle w1.	10.02%		
Percentage of loss in Apmplitude in one			
Cycle w2.	10.05%		
Largest Error	0.52%		

Rayleigh-damping-coefficients 1/1