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Abstract Among the ‘‘theories’’ applied to model

concrete behavior, damage mechanics has proven to

be efficient. One of the first models for concrete

introduced into such a framework is Mazars’ damage

model. A new formulation of this model, called the ‘‘l
model’’ and based on a coupling of elasticity and

damage within an isotropic formulation, is proposed

herein for the purpose of 3D cyclic and dynamic

loadings. Unilateral behavior (i.e., crack opening and

closure) is introduced by use of two internal variables.

A threshold surface is then associated with each of

these variables. The shape of such surfaces has been

chosen to model as accurately as possible concrete

behavior under various loadings, i.e., tension, com-

pression, shear, biaxial and triaxial, in the aim of

simulating a large number of loading types (mono-

tonic, cyclic, seismic, blast, impact, etc.). Applications

of this model are presented on plain or reinforced

concrete elements subjected to a range of loadings

(e.g., multiaxial, cyclic, dynamic). A comparison with

experimental results serves to demonstrate the effec-

tiveness of these various selected options.

Keywords Damage models � Thermodynamics of

irreversible processes � Unilateral behavior �
Concrete � Cyclic loading � Severe loadings � Finite

element calculations

1 Introduction

Estimating the ultimate capacity of a concrete struc-

ture is essential to determining appropriate safety

margins. Changes in regulations combined with the

objective of building sustainable structures have led

engineers to develop efficient modeling tools that

remain easy to use. The model presented in this paper

has been created for such a purpose.

Concrete is considered as brittle in tension and

more ductile under compressive loading. As opposed

to uniaxial tension, under which just a single crack

propagates, compression caused by the presence of

heterogeneities (aggregates surrounded by a cement

matrix) produces transverse tensile strains that gener-

ate mesoscopic cracks nucleating perpendicularly to

the direction of extension. These mesoscopic cracks

then coalesce until reaching the point of complete

rupture. A pure mode I (extension) is thus considered

for the purpose of describing behavior in both tension

and compression. This situation can be extended to

multiaxial loading at low and moderate confinement
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that allows for extension in at least one direction.

When the material is highly confined, hydrostatic

pressure serves to compact the porous cement matrix

and shear favors mode II.

Within this framework, it has been shown (Mazars

[1]) that two distinct damage modes essentially need to

be considered:

• the extension allowed (EA) domain: uni-, bi- or

triaxial situations allowing for extension (ei [ 0)

in at least one direction and, accordingly, for a

local cracking (mode I);

• the no extension allowed (NEA) domain: a triaxial

situation at high confinement generating both the

collapse of the cement porous matrix, as a result of

the spherical part of the stress tensor, and shear

cracking (mode II) due to the deviatoric part.

In the framework of continuum media, to simulate

concrete behavior, either plasticity (Ottosen [2],

Dragon et al. [3]), fracture-based approaches (Bazant

[4], Carpinteri [5]), damage models (Mazars [1],

Mazars et al. [6], Simo et al. [7], Jirasek [8]) or a

plastic-damage model (Lee and Fenves [9], Jason et al.

[10]) is used. Depending on the specific case, one or

the other approach may be suitable for certain situa-

tions (whether classical or not) found in common

structures for conventional loads.

For severe loadings relative to natural or techno-

logical hazards (e.g., earthquakes, blasts, impacts),

additional aspects must be taken into consideration,

namely: the dynamic and cyclic nature of the loading

and, for local impacts, the high confinement pressure.

Some models provide a description of the cyclic

behavior (la Borderie et al. [11], Halm et al. [12],

Richard et al. [13]). Very few models however are

capable of simulating loading with both confinement

and strain rate effects (Pontiroli et al. [14], Gatuingt

et al. [15]), though their use often remains complex.

This paper will present a strategy for modeling

these types of behavior, in emphasizing efficiency and

simplicity. To achieve this objective, a damage model

provides good candidate strategies. One of the first

models created within such a framework and specif-

ically intended for concrete is Mazars’ damage model

[1]. Efficient yet limited to ‘‘classical’’ monotonic

loadings, this new proposal, called the ‘‘l model’’ (l
for Mazars Unilateral), was developed as part of the

thermodynamics of irreversible processes (Lemaitre

et al. [16]) and has shown itself capable of describing a

very broad range of nonlinear behavior (monotonic,

cyclic, dynamic, etc.).

2 Theoretical aspects

2.1 Underlying assumptions

The main objective herein is to build as complete and

simple a model as possible, which implies formulating

the set of main assumptions listed below:

• Concrete behavior is considered as the combina-

tion of elasticity and damage;

• The damage description is assumed to be isotropic

and directly affects the stiffness evolution of the

material. Let K be the stiffness matrix of the

original material, then the matrix for the damaged

material is given by:

K
d

¼ Kð1 � dÞ ð1Þ

• As opposed to classical damage models, d denotes

the effective damage. Classically speaking, dam-

age is a variable that describes the microcracking

state of the material (Lemaitre and Chaboche

[16]). Moreover, d describes the effect of damage

on the stiffness activated by loading. In a cracked

structure, d must then be able to describe the

effects of crack opening and closure (i.e., unilat-

eral effects).

• Two principal damage modes are considered

cracking (due to tension) and crushing (due to

compression), to be subsequently associated with

two thermodynamic variables Yt and Yc, which

characterize the extreme loading state reached in

the tensile part and compressive part, respectively,

of the strain space.

2.2 Main concepts

In this context, the Helmotz free energy can be written

as:

qW ¼ 1

2
Kð1 � dÞ : e : e ð2Þ

with
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d ¼ f ðYt; YcÞ ð3Þ

The state laws then allow defining:

r ¼ q
oW
oe

¼ Kð1 � dÞ : e ð4Þ

According to thermodynamic rules, the energy ratio

dissipated during the damage process must be non-

negative and moreover respects the Clausius–Duhem

inequality:

r : e
�

�qW
�

� 0 ðx
�

¼ dx

dt
Þ ð5Þ

Combining (3), (4) and (5) yields:

�q
oW
o Yt

Yt

�

�q
oW
o Yc

Yc

�

� 0 ð6Þ

or:

�q
oW
od

od

o Yt
Yt

�

�q
oW
od

od

o Yc

Yc

�

� 0 ð7Þ

� oW
od

¼ 1
2
K : e : e is the damage energy release rate,

which always remains positive; hence, the Clausius–

Duhem inequality is verified if:

od

o Yt
Yt

�

� 0 and
od

o Yc

Yc

�

� 0 ð8Þ

2.2.1 Constitutive equations

Let’s now consider, like in the previous model

(Mazars [1]), the equivalent strain concept; here we

define et and ec as the equivalent strain for cracking

and crushing, respectively:

et ¼
Ie

2ð1 � 2mÞ þ
ffiffiffiffi

Je
p

2ð1 þ mÞ ð9Þ

ec ¼
Ie

5ð1 � 2mÞ þ
6

ffiffiffiffi

Je
p

5ð1 þ mÞ ð10Þ

Ie ¼ e1 þ e2 þ e3 (first invariant of the strain tensor)

and Je ¼ 0:5½ðe1 � e2Þ2 þ ðe2 � e3Þ2 þ ðe3 � e1Þ2�
(directly linked to the second invariant of the devia-

toric part of the strain tensor).

Two loading surfaces are to be associated:

ft ¼ et � Yt and fc ¼ ec � Yc ð11Þ

with Yt and Yc defining the maximum values reached

during the loading path:

Yt ¼ Sup½e0t;max et� and Yc ¼ Sup½e0c;max ec�
ð12Þ

e0t and e0c are the initial thresholds of et and ec

respectively.

2.2.2 Damage evolution

The effective damage d is directly correlated with the

thermodynamic variables Yt and Yc through the driving

variable Y:

Y ¼ r Yt þð1 � rÞ Yc ð13Þ

r ¼
P

rih iþ
P

rij j ð14Þ

where r is the triaxial factor (Lee and Fenves [9]),

which evolves in the stress space from 0 in the stress

compression domain to 1 in the stress tensile domain,

r ¼ r

ð1�dÞ ¼ K : e : e is the so-called ‘‘effective

stress’’, xh iþ is the positive part of x and |x| is the

absolute value of x.

As was the case for the Mazars’ model, the

damage evolution law is defined by:

d ¼ 1 � 1 � Að Þ Y0

Y
� A exp �B Y � Y0ð Þð Þ ð15Þ

where Y0 is the initial threshold for Y:

Y0 ¼ r e0t þ 1 � rð Þ e0c ð16Þ

At this stage, it can be noticed that under the condition

r = constant (radial paths), the Clausius–Duhem

inequality, Eq. (8), will be verified if:

od

o Yt
Yt

�

¼ od

oY

oY

o Yt
Yt

�

¼ od

oY
r Yt

�

� 0 ð17Þ

od

o Yc
Yc

�

¼ od

oY

oY

o Yc
Yc

�

¼ od

oY
ð1 � rÞ Yc

�

� 0 ð18Þ

Yt

�

; Yc

�

; r and (1-r) are always non-negative; then, (17)

and (18) are verified if:

od

oY
¼ ð1 � AÞ Y0

Y2
þ AB expð�BðY � Y0ÞÞ� 0 ð19Þ

The variables A and B determine the shape of the

effective damage evolution laws and subsequently the

behavioral laws.

The choice of relationship for A and B addresses the

following points:
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• Optimally reproducing the entire set of r–e curves

for the various loading paths in the stress space;

• For the specific case of shear, enabling reproduc-

tion of the sliding effects related to friction

whenever the concrete is cracked, thanks to a

residual stress.

• Allowing for easy identification of material

parameters from uniaxial experiments.

Then:

A ¼ Atð2 r2ð1 � 2kÞ � rð1 � 4kÞÞ þ Acð2 r2 �3r þ 1Þ
ð20Þ

B ¼ rðr
2 �2rþ2Þ

Bt þð1 � rðr
2 �2rþ2ÞÞBc ð21Þ

When r = 0 (compressive stress domain), A = Ac and

B = Bc; conversely, when r = 1 (tensile stress

domain), A = At and B = Bt. At, Bt, Ac, Bc, are

material parameters directly identified from compres-

sion tests and tension, or flexural bending tests. k is

used to calibrate the asymptotic stress value at large

displacement in shear: k = A (r = 0.5)/At.

Under the previous conditions (r = constant), it is

straightforward to show that od
oY

� 0 for typical values

of At, Bt, Ac and Bc. Radial paths are the most common

for classical structural loadings. For more complex

loadings, r can evolve while on the given loading path.

In this case, the Clausius–Duhem inequality (5)

includes another term, od
or
r
�

, and, along the same lines

as above, this inequality will be verified if in addition:

od

or
r
�

� 0 ð22Þ

During a complex loading path, the numerical verifi-

cation of Eq. (22) allows ensuring the thermodynamic

consistency of the solution to the problem. This step

has been performed for series of loadings that include

a strong variation of r (e.g., loading paths describing

circles on the surface of a sphere centered at the origin

of the strain space), in demonstrating that Eq. (22) is

always respected for all cases treated.

2.3 Model validation

2.3.1 Calculation procedure: model responses

for various loading paths

Figure 1 displays the evolution principle of the

various variables along a tension–compression path;

it shows, for the entire loading path, that the thermo-

dynamic variables Yt and Yc are continuously increas-

ing. Compared to other unilateral models, this trend is

unique and highlights an irregular evolution in damage

variable d given its dependence on r. In that frame-

work, effective damage can be interpreted as the part

of damage activated by local stress. In the case of prior

time

time

Yt Y Yc

ε      r=1 r=0

time

d

Damage evolution

Loading path

0   t1 t2

0   t1 t2 t3 t4 t5 t6

0                t4 t5

Y=Yt Y=Yc

Fig. 1 Evolution of internal variables Yt and Yc, their combination Y, and damage d, during a tension– compression loading
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damage created in tension (see Fig. 1 for t[ t2), if

during a subsequent loading the local stress acts in the

crack-closing direction, then the effective damage is

equal to 0 (see Fig. 1 for t3\ t\ t4). If, on the

contrary, the stress acts in the crack-opening direction,

the effective damage remains d.

The stress–strain response for such a loading is

given in Fig. 2. The unilateral effect is clearly

exhibited when, from tension (t = t3), the stress goes

into compression (t = t5).

Kupfer et al. [17] conducted a series of tests

to investigate the response of plain concrete subjected

to a two-dimensional loading. During these investiga-

tions, concrete plates (200 mm 9 200 mm 950

mm) were loaded until failure at prescribed ratios of

r1/r2, with r3 set equal to zero. ri denotes the

principal stresses.

The concrete specimen characteristics are listed in

Table 1. Model parameters have been fitted so as to

obtain the same strengths (ft, fc) under uniaxial tensile

and uniaxial compressive loadings, respectively.

Results from running the l model have been

compared with experimental results for both a ten-

sion–compression test and a bi-compression test, with

r1 \ 0 and the ratio r2/r1 = -0.052 and ?0.52,

respectively (Fig. 3). Let’s underscore that only the

characteristics in Table 1 have been used to assign the

model’s material parameters, thus transforming these

results into a real prediction. At the top of the curve

and due to loading controls, the final experimental

point corresponds to collapse of the specimen.

In both cases, the l model yields a very good

prediction of maximum strength and quite good results

for the strain evolution in various directions, except

for extension, in the vicinity of the peak load. This

Pa Loading path :
O(0), A(t1), B(t2), O(t3), C(t4), 
D(t5),O(t6), B(t7), E(t8), O(t9),

D(t10), F(t11)

C

B
A

O E

M
D

F

ε1

Fig. 2 Tension–compression loading path exhibiting the uni-

lateral effect (time references are in accordance with Fig. 1)

Table 1 Concrete

characteristics, for the

Kupfer tests

Exp. data Model parameters

fc (MPa) ft (MPa) E (GPa) m et0 ec0 At Bt Ac Bc

32.7 3.2 30 0.21 1.1e-4 3e-4 1 1e?4 1.25 517

ε2ε1

(a)

ε1 ε3 ε2

(b)

ε

ε

Fig. 3 Comparison between numerical curves and experimen-

tal points from Kupfer et al. [17]: a for a traction–compression

loading with r2=r1 = -0.052 (r1\ 0), and b for a biaxial

compression loading with r2=r1 = 0.52 (r1 \ 0)
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outcome stems from the fact that the Poisson’s ratio

remains constant in an isotropic formulation.

For the traction–compression test (r2/r1 =

-0.052; r1 \ 0), in order to show how works the

unilateral effect, a second stage of the loading path has

been applied: r2/r1 = 0 and r1 [ 0. Figure 4 gives

the response of the model for the two stages of the

loading path. Figure 4b, shows that during stage I, due

to the compression applied in direction 1, the tensile

strength in direction 2 is less than 50 % of the uniaxial

strength ft. Figure 4a shows that after stage I, the

initial stiffness is recovered for direction 1 (unilateral

effect) and the tensile strength is almost the same as

that of the original material.

2.3.2 Failure surface

Figure 5 shows, in the plane r3 = 0, the traces of both

the surface initiation of damage (d = 0) and the failure

surface (maximum stress envelope: points A and M on

the uniaxial curve in Fig. 2). This same figure plots

experimental data for the failure surface obtained from

several biaxial tests along various loading paths, by

Kupfer et al. [18] on an ordinary concrete. This model

offers very good results with just a few differences

near the bisector in the bi-compression area.

3 Applications on beams under cyclic loading

Applications covered by the lmodel are mainly severe

loadings on concrete structures. Among these applica-

tions, earthquakes would be an important issue:

earthquakes generate nonlinear cyclic loadings on

structural elements. The strain rate is small enough to

be eliminated as an issue, unlike with blasts and shocks.

The LMT Laboratory at ENS Cachan (France) has

conducted an experimental campaign on reinforced

concrete (RC) beams in order to study phenomena that

play a major role in the response of RC structures

during an earthquake (Ragueneau et al. [19], Crambuer

et al. [20]). Phenomena such as damage evolution

during increased loading, unilateral effects and energy

dissipation due to cyclic loads have all been analyzed.

These results will serve for the applications that follow.

3.1 Experimental program

A series of rectangular RC beams were tested accord-

ing to the protocol given in Fig. 6. The specimens

measured 1.65 m long by 0.22 m high by 0.15 m

I

II

(b)

I

II(a)

Stage I

Stage II

x2

x1
ε

ε

Fig. 4 Biaxial responses of the l model: stage I, r2=r1 =

-0.052 (r1 \ 0); stage II, r2=r1 = 0 (r1 [ 0); a response

showing that after the stage I, the stiffness and the tensile

strength direction 1 are recovered (r1, e1); b response showing

that during stage I the tensile strength, in direction 2 (r2, e2), is

less than 50 % of the uniaxial tensile strength ft

Fig. 5 l model in the plane r3 = 0: traces of the damage

initiation surface (dashed line) and of the failure surface

compared to experimental results provided by Kupfer et al. [18]
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wide. The entire campaign consisted of various

longitudinal reinforcement steel ratios, though in this

paper only the two specimens reinforced with four

12 mm rebar are considered (Fig. 6a). The concrete is

a regular C30/37, whose characteristics are listed in

Table 2.

The RC beams are designed to be tested with a

simple three-point bending set-up in the up and

down vertical direction. A specific hinge device

ensures a free-rotation condition at the end of the

support beams. The loading path has been repro-

duced in Fig. 6b; it is displacement-controlled and

includes sets of three cycles with gradually increas-

ing intensity (from ±1 mm to ±8 mm). Figure 6c

shows the force–displacement response of beam no.

2 for the full program, indicating: (i) the gradual

decrease in stiffness due to concrete damage during

the first series of cycles, and (ii) the appearance of

rebar plasticity after the ±4 mm cycles and its

continued prevalence beyond this stage.

3.2 Numerical modeling approach

The test specimen was modeled using Q4 (four-node)

elements under a plane strain assumption and bar

elements for rebar. The symmetry of the problem is

used and the mesh for the half beam (711 nodes, 776

elements) is uniform over the central part of the beam.

Boundary conditions are defined so as to correctly

represent the experimental test (Fig. 7). The imposed

o

1,5 m0.15 m

0.22

Disp.

Time

Hinge Imposed 
displacement

4 HA12

1mm
(a)

(b)

(c)

Fig. 6 Three-point bending

test: a specimen geometry

and boundary conditions,

b loading programme: series

of three cycles from ±1 mm

to ±8 mm, c response

throughout the entire

loading program (beam No.

2)

Table 2 Three point RC bend tests, experimental data and material specifications

Experimental data Concrete model parameters

Steel Concrete

E (GPa) rrupt (MPa) E (GPa) fc (MPa) E (GPa) m et0 ec0 At Bt Ac Bc

205 530 28 35 28 0.2 1.14e-4 -3.57e-4 0.8 7000 1.25 395
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displacement Uy was applied on both the upper and

lower parts within the central section of the beam.

To avoid mesh sensitivity, the crack band approach

based on the fracture energy concept has been

introduced into this application (Bazant et al. [21]).

The definition of Gf was derived according to Planas

et al. [22] and Bazant [23], meaning that in the central

part of the beam (i.e., where damage and plasticity are

concentrated), the size of elements is consistent with

the crack band width:

h ¼ 2Gf

f 2
t

1

E
� 1

Et

� ��1

ð23Þ

with Et being the post-peak tangent stiffness for an

equivalent triangular shape of the r–e curve.

The selected model parameter values have been

adopted in accordance with the data provided in

Table 2.

Regarding the rebar, bar elements are used in

compliance with the elasto-plastic hardening model

developed by Menegotto–Pinto [24]. Figure 7b dis-

plays the related r–e curve.

3.3 Results

3.3.1 Global results

Various situations have been modeled herein. Figure 8

compares the load–displacement curves resulting from

the simulations with the experimental points:

• For the total loading path, the calculation curve

(Fig. 8a, solid line), performed without any cycle,

shows good agreement with the envelope for the

entire set of experimental curves.

• For the same loading path with cycles up

to ±2 mm, the comparison shows very good

agreement (Fig. 8b).

• For a cyclic loading of ±5 mm, including rebar

plasticity (Fig. 8c), the results are also very

satisfactory.

It can be concluded from these results that the

stiffness recovery, as modeled by the l model, very

accurately reproduces the experimental results and,

moreover, the decision not to represent the permanent

concrete strain does not penalize these results (some

differences are only visible around the zero loading point

when rebar plasticity has not been activated– Fig. 8b).

3.3.2 Local results

Such a modeling approach serves to access local

information indicating what happens inside the dam-

aged areas both in concrete and in rebar. Figure 9

shows, at a given stage of the loading (±5mm), the

strain field on the lateral beam surface. In Fig. 9b, the

strain field is obtained by means of Digital Image

Correlation (Ragueneau et al. [19]), which in turn

identifies active cracks. Figure 9a highlights the strain

concentrations, in correspondence with the crack

bands where damage is localized and then where

cracks are predicted by calculation. The dark grey area

corresponds to a compressive strain, which is ampli-

fied in the compressed zones due to previous damage.

A high level of agreement can be observed between

these two images.

During a cyclic loading, at a given location, the

effective damage d evolves until a maximum value of

Hinge
Imposed 
displacement

●

(a)

ε

σ
(b)

Fig. 7 Three-point bending tests, a mesh used, b elasto-plastic behaviour for steel [24]
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the load in one direction is reached. When the load is

reversed, the local stress is also reversed. As presented

Fig. 1, due to changes, first in the triaxial factor

r (Eq. 14) and then in the damage driving variable

Y (Eq. 13), this maximum value of d vanishes. This

specific property may be used as a crack opening

indicator.

Figure 10 provides the situation with d (the grey

scale indicate where 0.98\ d\ 1), for two different

stages after a series of cycles extending to ±2 mm.

The effective damage area is seen to represent a crack

opening stage, as revealed by the Digital Image

Correlation analysis, which is also depicted in Fig. 10.

However, if necessary, it is possible to visualize

after a given loading path the total damage area thanks

to the thermodynamic variables Yt and Yc. Two images

can thus be derived: one is using Yt, while the other is

using Yc, both of which are representative of cracking

under tension and compression respectively.

These results reveal an efficient model, which has

proven to be robust and effective in describing both

cyclic behavior and crack opening behavior. The l

Fig. 8 Bending test on RC beams as an experiment–calculation

comparison: a comparison of the envelope of the total

experimental response with a calculation driven without any

cycle (beam No. 1), b comparison for the total path up

to ±2 mm (beam No. 1), c cycle computed for ±5 mm

compared to the experimental response up to ±5 mm (beam

No. 2)
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model is thus a good candidate for solving seismic

problems.

4 Loading with confinement and strain rate effects

Among the range of severe loading situations involv-

ing concrete structures, blasts and impacts must be

considered. To simulate these effects, the adopted

modeling approach must include strain rate effects and

confinement effects. This section will propose lmodel

improvements that allow simulating both phenomena.

4.1 Strain rate effects

The dependence of concrete strength on strain rate is

well known, particularly under tension whereby

inertia effects cannot explain the phenomenon. As

presented in Pontiroli et al. [12], this effect is taken

into account using a dynamic threshold ed
0t

� �

instead of

Observation 
area 

(a) (b)

ε11 

Fig. 9 Strain field on the lateral surface of the beam at a given stage (±5 mm), providing a picture of the crack opening state:

a calculation results, b test results obtained by digital image correlation (DIC)

(a)

(b)

Observation 
area 

Damage
 1 

0.99

0.98

Fig. 10 Effective damage used as a crack opening indicator (d[ 0.98) after cycles of up to ±2 mm and cracks observed by digital

image correlation with deflection of: a -2 mm, b ?2 mm
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a static one es
0t

� �

. The dynamic threshold is deduced

from the static one through an increase factor depen-

dent on the strain rate _e (=de/dt):

Rt ¼ _ed
0t = _es

0t ¼ min ½max ð1:0 þ at _e
bt; ct _e

dtÞ; 5�
ð23Þ

at, bt, ct and dt are material coefficients defined by the

user and derived from experimental results.

An experimental campaign has recently been

conducted at the LEM3 Laboratory in Metz (France)

(Forquin and Erzar [25], Erzar and Forquin [26]); it

has focused on quasi-static tests and dynamic tests

performed on both dry and wet concrete specimens. A

high-speed hydraulic press was applied for the inter-

mediate strain rate, and an experimental Hopkinson

bar device, based on the spalling technique, was used

for higher strain rates. From these tests, original

identification techniques could be developed in order

to deduce the tensile strength of the material.

For an ordinary concrete (fc = 30 MPa), the com-

plete results are given in Fig. 11.

In the l model, the dynamic tensile strength is

assumed to be the peak of the stress–strain curve:

ft = Eed
0t. From (23), ft = f( _e) can be obtained. These

results have also been plotted in Fig. 11, thus

confirming that the calculations provide excellent

results. It is a simple step to extend such a calculation

to 3D situations by introducing ed
0t into Eqs. (12) and

(16), in order to define the initial threshold of the 3D

driving variable of damage, Y.

To highlight the ability of the l model to describe

high velocity problems, the spalling test conducted at

LEM3 has been simulated. The test specimen was a

cylinder (L = 140 mm, / = 45 mm) whose left edge

was in contact with the Hopkinson bar, which

generated the compressive wave on the right edge

(Fig. 12c). The transmitted compressive pulse propa-

gated along the specimen until reaching the free end,

where it was reflected as a tensile pulse traveling in the

opposite direction. When the amplitude of the

reflected pulse has exceeded that of the incident pulse,

a dynamic tensile loading spread across the specimen

leading to a potential fracture; in Fig. 12d, the stress

waves calculated for three specimen locations (120, 60

and 40 mm from the free edge) show that the stress at

failure is reached at 8 ms for 14.9 MPa. Figure 12a

also displays the experimental result obtained for a

given pulse that led to multi-fracture of the specimen.

Figure 12b shows a similar result for the calculation

performed on a fiber beam model. Fracture is deter-

mined using an erosion technique: the element is

eroded when strain reaches a very high value

(e[ 10-2).

4.2 Confinement effects

Confinement corresponds to loadings in the tri-

compression domain. The triaxial coefficient r,

introduced in Eq. (14), lies within the confinement

domain and equals 0. As mentioned in Sect. 1,

damage modes depend on the presence or absence of

extensions. At this point, two distinct domains can be

considered: (i) the extension allowed (EA) domain,

whereby during loading a positive strain exists in at

least one direction; and (ii) a no extension allowed

(NEA) domain, when loading prevents any kind of

extension.

Positive strains within the EA domain can generate

local damage and, as will be seen below, the lmodel is

a good candidate to describe this situation, which

corresponds to a soft impact.

In contrast, within the NEA domain, phenomena

are of two orders: (i) strong confinement leading to a

gradual collapse of cement matrix porosity; and (ii) the

shear caused by stress triaxiality generates local mode

II cracking. It has been shown that such phenomena

can be advantageously modeled through introducing

compaction and plasticity effects. Coupling of the l
model with a plasticity model, as performed in the

ε&

Fig. 11 Concrete tensile strength versus strain rate: experi-

ments [25] and the model with corresponding r–e curves, the

peak of which increases with _e
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PRM model [14], will be considered in future

developments.

4.2.1 Low and moderate confinement

The loading state in this zone is given by:
P

eih i? = 0,

which can be written Ieþ = 0. From the definition

provided in Sect. 2, a confinement coefficient C is

introduced in order to model confinement effects

within the EA domain. This step affects the thermo-

dynamic variable Yc. With r = 0, the variable Y

(Eq. (13)) that controls damage then becomes:

Y ¼ C Yc ð24Þ

C is an indicator of the existence of a local

extension and has been defined as follows:

C ¼ 1 if r[ 0

C ¼
P

eih iþ
P

ei0h iþ
, C ¼ Ieþ

Ie0þ
if r ¼ 0

8

<

:

ð25Þ

Ie0þ is the projection of Ieþ on the nearest plane ri = 0.

Ie0þ is thus calculated by setting 0 as the ‘‘strongest’’

stress (i.e., the lowest in absolute value terms) of the

three principal stresses. From these equations, d can be

calculated according to a classical approach using (15).

To analyze the model response within the EA

domain, a cylindrical specimen subjected to a vertical

compression r1 and confinement r2 ¼ r3 will be

considered (see Fig. 13a). This test can be conducted

in a cell adapted for concrete specimens.

The loading path comprises two steps, i.e.:

1. radial path: r2 ¼ r3 ¼ br1 (where b is a constant)

(a)

(b)

(c) (d)

Damage
1 

0.5

0 

Fig. 12 Spalling test: a post-test cracking on the concrete

specimen [26], b damage resulting from a calculation exhibiting

two main cracks, c pulse applied on the left edge of the

specimen, d r(t) response at three locations (120, 60, 40 mm

from the right edge) exhibiting failure at 8 ms
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2. triaxial path: r2 ¼ r3 ¼ S (S is a fixed level), with

r1 increasing until failure.

Poisson’s ratio m is responsible for the transverse

extension. For a given value of m, typically equal to

0.2, it is straightforward to show that C = 0 for b
values greater than or equal to 0.25. To avoid any

damage during the first step, b = 0.25 has been

chosen. Afterwards, during the second step b (= S/ r1)

decreases, allowing d to evolve until failure (Fig. 13).

Figure 13b displays the numerical results derived

for the same concrete specimen used earlier and for

S values of 0, 20, 35, 50 and 100 MPa. Fig. 13c

presents the experimental results obtained by two

researchers on a similar concrete and on similar

loading paths (Ramtani [27], Gabet [28]). It can be

observed that both, the trends and values at failure

have been correctly simulated. At a high S value (i.e.,

100 MPa) however, it is observed that the phenomena

described for the NEA domain have been activated,

particularly compaction damage, which along with

extension damage serve to accelerate specimen col-

lapse and thus explain the conservative strength value

resulting from calculation. This loading situation

provides the limitation of the present development of

the l model.

5 Conclusion

Thelmodel has been based on the principles of isotropic

damage mechanics. Two thermodynamic variables have

been defined to describe, within a 3D formulation, the

unilateral behavior of concrete (crack opening and

closure), which is essential for cyclic loadings, in

particular the seismic behavior of concrete structures.

Built around a simple formulation that combines

elasticity and damage and in respecting the thermo-

dynamic principles of irreversible processes, this

model is simply implemented into a finite element

code. Furthermore, the material parameters (i.e. eight

in all, including elastic parameters) are easily identi-

fied solely from individual tensile and compressive

tests. A series of applications yields, both at the

material level and on reinforced concrete structures, a

set of satisfactory experimental results attesting to the

model’s effectiveness.

400

300

200

100

ε

S=100 MPa

S=50 MPa

S=35 MPa

S=20 MPa

S=0 MPa

σ1 (MPa)

(a)

(c)

-2 0         2 4 6 8.10-2

S=100 MPa

S=50 MPa

S=35 MPa

S=20 MPa

S=0 MPa

ε

(b)

Fig. 13 Triaxial test: a specimen and loading path, after a radial path, r2 ¼ r3 ¼ S and r1 increases until failure, b response of the l
model, c experimental results (Ramtani [27] and Gabet [28] )
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Through variation in the strain rate of the initial

threshold of the driving damage variable, it has been

proven that the model is able to describe high-velocity

loading. The model’s ability to account for low and

moderate confinement, i.e. when the load allows for

extensions (
P

eih i? = 0), was also discussed.

Dynamic loadings at either low or high speed, such

as a blast or impact, could then be simulated, although

an improved description of compaction phenomena

and shear-driven local mode II is required to produce a

complete model capable of simulating the punching

effects that lead to penetration and perforation.

In conclusion, this model can provide a useful tool

for engineering applications, as was initially expected,

and moreover is able to cover a wide diversity of

monotonic or cyclic problems from quasi-static to

high-velocity loadings (i.e., earthquakes, blasts, soft

impacts). New developments are underway to both:

(i) complete the 3D version for high confinement, and

(ii) create simplified tools, such as multifiber beams,

based on the l model and enhanced to treat 3D

structural problems including torsion, severe loading

and cracking indicators [29, 30].
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portement multiaxial du béton endommagé avec description

du caractère unilateral. PhD thesis. University Paris 6, 1990

3792 Materials and Structures (2015) 48:3779–3793



28. Gabet T, Malecot Y, Daudeville L (2008) Triaxial behavior

of concrete under high stresses: influence of the loading path

on compaction and limit states. Cem Concr Res 38(3):

403–412

29. Capdevielle S, Grange S, Dufour F, Desprez C (2014)

Introduction of warping in a multifiber beam model: effect

on the nonlinear analysis of reinforced concrete structures

under torsion. EURO-C 2014, St Anton am Arlberg, Austria

30. Mazars J, Grange S (2014) Simplified method strategies

based on damage mechanics for engineering issues. EURO-

C 2014, St Anton am Arlberg, Austria

Materials and Structures (2015) 48:3779–3793 3793


	A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings
	Abstract
	Introduction
	Theoretical aspects
	Underlying assumptions
	Main concepts
	Constitutive equations
	Damage evolution

	Model validation
	Calculation procedure: model responses for various loading paths
	Failure surface


	Applications on beams under cyclic loading
	Experimental program
	Numerical modeling approach
	Results
	Global results
	Local results


	Loading with confinement and strain rate effects
	Strain rate effects
	Confinement effects
	Low and moderate confinement


	Conclusion
	Acknowledgments
	References




